A new approach to betweenness centrality based on the Shapley Value

نویسندگان

  • Piotr L. Szczepanski
  • Tomasz P. Michalak
  • Talal Rahwan
چکیده

In many real-life networks, such as urban structures, protein interactions and social networks, one of the key issues is to measure the centrality of nodes, i.e. to determine which nodes and edges are more central to the functioning of the entire network than others. In this paper we focus on betweenness centrality — a metric based on which the centrality of a node is related to the number of shortest paths that pass through that node. This metric has been shown to be well suited for many, often complex, networks. In its standard form, the betweenness centrality, just like other centrality metrics, evaluates nodes based on their individual contributions to the functioning of the network. For instance, the importance of an intersection in a road network can be computed as the difference between the full capacity of this network and its capacity when the intersection is completely shut down. However, as recently argued in the literature, such an approach is inadequate for many real-life applications, as, for example, multiple nodes can fail simultaneously. Thus, what would be desirable is to refine the existing centrality metrics such that they take into account not only the functioning of nodes as individual entities but also as members of groups of nodes. One recently-proposed way of doing this is based on the Shapley Value — a solution concept in cooperative game theory that measures in a fair way the contributions of players to all the coalitions that they could possibly participate in. Although this approach has been used to extend various centrality metrics, such an extension to betweenness centrality is yet to be developed. The main challenge when developing such a refinement is to tackle the computational complexity; the Shapley Value generally requires an exponential number of operations, making its use limited to a small number of player (or nodes in our context). Against this background, our main contribution in this paper is to refine the betweenness centrality metric based on the Shapley Value: we develop an algorithm for computing this new metric, and show that it has the same complexity as the best known algorithm due to Brandes [7] to compute the standard betweenness centrality (i.e., polynomial in the size of the network). Finally, we show that our results can be extended to another important centrality metric called stress centrality. ∗The authors would like to thank all four anonymous reviewers for their useful comments that significantly improved the paper. Appears in: Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.), 4-8 June 2012, Valencia, Spain. Copyright c © 2012, International Foundation for Autonomous Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Further Results on Betweenness Centrality of Graphs

Betweenness centrality is a distance-based invariant of graphs. In this paper, we use lexicographic product to compute betweenness centrality of some important classes of graphs. Finally, we pose some open problems related to this topic.

متن کامل

Shapley Ratings in Brain Networks

Recent applications of network theory to brain networks as well as the expanding empirical databases of brain architecture spawn an interest in novel techniques for analyzing connectivity patterns in the brain. Treating individual brain structures as nodes in a directed graph model permits the application of graph theoretical concepts to the analysis of these structures within their large-scale...

متن کامل

A Fast Approach to the Detection of All-Purpose Hubs in Complex Networks with Chemical Applications

A novel algorithm for the fast detection of hubs in chemical networks is presented. The algorithm identifies a set of nodes in the network as most significant, aimed to be the most effective points of distribution for fast, widespread coverage throughout the system. We show that our hubs have in general greater closeness centrality and betweenness centrality than vertices with maximal degree, w...

متن کامل

Efficient Computation of Semivalues for Game-Theoretic Network Centrality

Solution concepts from cooperative game theory, such as the Shapley value or the Banzhaf index, have recently been advocated as interesting extensions of standard measures of node centrality in networks. While this direction of research is promising, the computation of game-theoretic centrality can be challenging. In an attempt to address the computational issues of game-theoretic network centr...

متن کامل

The Influence of Location on Nodes’ Centrality in Location-Based Social Networks

Nowadays, due to the widespread use of social networks, they can be used as a convenient, low-cost, and affordable tool for disseminating all kinds of information and data among the massive users of these networks. Issues such as marketing for new products, informing the public in critical situations, and disseminating medical and technological innovations are topics that have been considered b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012